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ABSTRACT: A simple methodology for the analysis of thin walled composite beams sub-
jected to bending, torque, shear, and axial forces is developed. Members with open or closed

cross section are considered. The cross section is modeled as a collection of flat, arc-circular, -

and concentrated area segments. Each laminated segment is modeled with the constitutive
equations of classical lamination theory accounting for a linear distribution of normal and shear
strains through the thickness of the walls, thus allowing for greater accuracy than classical thin
walled theory when the walls are moderately thick. The geometric properties used in classical
beam theory such as area, first moment of area, center of gravity, etc., are no longer used be-
cause of the variability of the materials properties in the cross section. Instead, mechanical
propertics such as axial stiffness. mechanical first moment of arca, mechanical center of grav-
ity, etc., arc defined to incorporate both the geometry and the material propertics. Warping, re-
striction to warping, and secondary stresses are considered. Failure predictions are made with
customary failure criteria. Comparison with experimental results are presented.

1. INTRODUCTION

COMPOSITE MATERIALS ARE be¢ing used in all types of structural applications, from
aircraft structures to civil infrastructure [1]. Beams, which constitute the most
common structural component, are subjected to combined loading including bending,
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shear, torsion, and axial forces. From a design point of view, there is considerable in-
terest in developing a beam theory including torsion that results in simple equations
similar to those available for beams made of a single isotropic and homogeneous ma-
terial. Beam theories attempting to address the case of generally laminated section
with arbitrary geometry result in complex formulations for which solutions can be ob-
tained only in a limited number of simple cases. A general formulation is presented in
Reference [2], and the equations are solved for a solid rectangular layered section.
Analytical solutions exist for the case of two-layer isotropic [3], symmetric sandwich
isotropic [4], homogeneous anisotropic [5], and laminated bars [6,7]; with all these so-
lutions limited to rectangular solid sections.

Introducing approximations regarding the kinematics of deformation in the
laminate, it is possible to obtain simpler solutions to more general cases, although
the accuracy may suffer for cases of strong material coupling. Approximate for-
mulations are developed in Reference [8], separately for the cases of rectangular,
tubular, and open sections. An approximate formulation for rectangular beams is
presented in Reference [9] and closed form solutions are derived for the specially
orthotropic laminated beam. Using first order shear deformation theory (FSDT) to
model'the kinematics of the laminate, a closed form solution to a general ortho-
tropic laminate is developed in Reference [10] for rectangular solid geometry.
FSDT was also used in Reference [11] to develop the differential equations gov-
erning the beam behavior of thin-walled laminated sections which are then solved
for the case of circular cylindrical shells. A simple formulation was presented in
Reference [28] to compute the bending and shear stiffness of Timoshenko’s beam
theory for thin-walled laminated beams without torsion. Fortunately, many practi-
cal engineering applications exist for which the approximations made in these
theories are reasonable. These include the cases of pultruded structural shapes
widely used in civil infrastructure applications, and most laminated beams where
thick laminates, very dissimilar materials, or severely unsymmetrical, unbalanced
lay-ups are excluded to avoid the undesirable effects that those confi gurations pro-
duce, including warping due to curing residual stresses, etc.

Of course, special applications do exist, such as helicopter rotor blades [ 12], and
swept forward aircraft wings [13], were strong coupling effects are desirable. No
attempt is made in this work to address these complex situations. Solutions are also
available for special geometries, specially cylindrical shells [14]. Contour analy-
ses for aeroelastically tailored composite rotor blades are presented in References
[15-17]. Direct solution of the governing differential equations was accomplished
for the case of single-cell closed section in Reference [18]and [16]. Reduced plate
models have been used for composite box beams [19,20].

Experimental results for laminated circular pipe are presented in Reference [21]
along with analysis of the results. Experimental results for rectangular tubes made
of Graphite-Epoxy are reported in Reference [22]. Analysis and comparison with
the experimental results is presented in Reference [23]. Both papers deal with
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box-beams exhibiting bending-torsion : coupling, ‘ extension-shear coupling, o
extension-torsion coupling, and bending-shear coupling, typical of helicopter ro-

tor blades. While strong coupled behavior is common in helicopter rotor blades, it
is not common in most structural applications such as civil construction, automo-
tive, etc., because coupling leads to undesirable residual stresses and warping dur-
ing manufacturing. . -~

The objective of this investigation is to develop simple equations that can be
used for design of open or closed sections of arbitrary shape. In order to arrive at
practical equations, the off-ply layers should be arranged in a balanced symmetric
configuration. The laminate can be unsymmetrical as a result of orthotropic layers
(isotropic, unidirectional, or random reinforced layers) that are not symmetrically
arranged with respect to the-middle surface.

2. DESCRIPTION OF THE CROSS SECTION

The cross section is described by the contour, which is a line going through the
midsurface of all the panels that form the cross section (Figure 1). Each panel is de-
scribed by one or more segments. One segment is used for each panel in Figure 2a.
Two segments or more are necessary for each flange in Figure 2b because a node
must be placed at the flange-web connection. From now on we will refer to seg-

My
Qy
@ !
AY
2 3
@ SA o) X _gx> Mx

Figure 1. Definition of the global and local coordinate systems, and node and segment num-
bering for a symmetric, closed section.
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Figure 2. Definition of the local coordinate system, node and segment numbering for (a) a

closed section, (b) and open section.

Figure 3. Definition of principal axes of bending for a general open section.
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Table 1. Contour definition for Figure 2a.

Segment Number n; -ong Segments Converging to n;
1 B B 2 0 0 0
2 2 3 1 0 0
3 '3 4 2 0 0
4 4 1 3 0 0

ments instead of panels to describe each flat or curve wall composing the thin
walled beam because the term panel is used in many engineering disciplines to de-
scribe such things as stiffened panels in ship or aircraft construction, bridge pan-
els, etc. The segments can be flat-or curved in the shape of an arc of circle (Figure
3). Concentrated areas can be added to represent the contributions of attachments
that we do not choose to model eXplicitly. Arc segments are divided in a large
number of flat segments for analysis.

The definition of each segment is done in terms of the nodes, which can be
numbered arbitrarily. All segments are defined by an initial node »; and a final
node ny. Arc-circular segments need a third mid-node to define the geometry.
For a closed section, the segments and the nodes are numbered consecutively.
Reference must be made to all the segments converging to the initial node of
each segment**. Table 1 summarizes the description of the contour shown in
Figure 2a. Table 2 summarizes the description of the contour shown in Figure
2b.

The contour integrals are done segment by segment, accumulating the contribu-
tion of all the segments. The order in which segments are defined and the orienta-
tion of the s-coordinate in each segment must allow for the correct accumulation of
contour integrals such as first moment of area, which must start at a free end. Tak-
ing Figure 2b and Table 2 as an example, note that the definition of the segments 1
and 2 start at a free edge with the s-coordinate oriented towards the common node.

**The current computer implementation allows for up to three predefined segments to converge to the initial node »;
of any segment (see Table 1 and 2). \

Table 2. Contour definition for Figure 2b.

Segment Number n; n, Segments Converging to n;
1 1 2 0 0 0
2 3 4 0 0 0
3 4 2 2 0 0
4 2 5 1 3 0
5 6 7 -0 0 0
6 5 7 4 5 0
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Figure 4. Definition of stress resultants in the laminate.

Segment 4 is defined with the common node (node 2) as the initial node. Segments
1 and 3 must be defined as converging to segment 4, so that the contour integral for
the static moment will accumulate the contribution of the previous segments. A
segment with a free edge can be defined at any time with the free edge as the first
node (n;) with the exception of segment 6 where the free edge is the final node of
the segment to complete the contour integral. Note that the local coordinates are
oriented from r; to ny, resulting in opposite orientation in segments 1 and 2. This
has an important implication in the way the laminate is defined because the first
layer is always at the surface with negative r-coordinate.

The coordinates of each node are given in terms of an arbitrarily selected
global coordinate system. The global coordinate system is shown in Figure 1
and Figure 3, with axes z, x, y. In Figure 3, the coordinate system 7, £, rotated
and angle & with respect to the global coordinate system, describes the princi-

- pal axes of bending.

Each segment also has its own local coordinate system (Figure 2). The contour
coordinate s is oriented from the initial node to the final node. The other two local
coordinates are the global z-axis and the 7-axis that is obtained as the cross product
of ztimes s, or r =z X s, in such a way that the r-coordinate spans the thickness of
the segment. .

The fiber orientation of layer £ is given by the angle ¢* (Figure 4) which is posi-
tive counterclockwise around the r-axis and starting from the z-axis. While the
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z-axis always coincides with the axis of the beam, the r-ax'is orientation depends
on the nodes n;and ny. The first layer (k=1), of thickness #, is loc.ated at t})e bottom
of the laminate, on the negative r-axis. It is important to emphasize that if one seg-
ment orientation is changed; a) the order of the laminas in t!lat segment must be
changed and b) the'sign of each lamina orientation angle ¢* in Fhat segment must
also be changed. ‘ A

3. SEGMENT STIFFNESS

Each segment of the cross section is modeled initially as a thin plate using the
constitutive equations of a laminated plate, neglecting transverse shear deforma-
tion ”

N: (4, A, A By Bp By | 8’37

N; - Ay, Ax By By By 5:

NL _ A Bis By B y'zs )
‘ M} [~ D, D, Dyl||k.

MZ Dy Dy K,

ML) Lsym D ] i,

where the superscript ()’ indicates the segment number, A, are the .inplane stiff-
ness, By, are the coupling stiffnesses, and D, are the out-of-plane stiffnesses (see
References [24,25]), withp, g =1, 2,6. .

In Equation (1), N I N!,and N, are the tensile and shear fortl;es p?r unilt length
along the boundary of the plate (Figure 4) with units [N/m], M ) M, M, are the
moments per unit length on the sides, with units [N]. The .bendmg moments are
positive when they produce a concave deformation looking from the'negatwe
r-axis. The mid-plane strains are £, £, and y' ,and the curvatures are k., K, and
«' . Note that from equilibrium o,; = a. Therefore, only M., will be used in the rest
oth"‘ this paper, with the orientation given in Figure 4.

The superscript ( )’ is used not only to indicate the.segmen’t m:mbier b’pt ailso to
differentiate the plate quantities N}, NI, N1, M, M, M, €., €, Y 20 Ko x,, and
k!, (which vary along the contour, see Figure 4) from the constant beam quantities
*N,, Oy, Qc, Mz, My, M, &2, Ky, Ke, and 8 (see Figure 1) to be d.efmed later.-Plate
stress resultants (forces and moments per unit length) and strains are fu?ctlon of

the contour coordinate s and must be interpreted as N 1(5), N (s), £.(s), £(s), etc.,
in the rest of the paper. .

The stiffness equations (i.e., ABD matrix) are inverted to get the compliance

equations
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Equations 1 and 2 contain the plane stress assumption o, = 0. Next, the unde-
formability of the contour is used, as in classical thin walled theory, to further re-
duce the complexity of the problem. Tsai [26] used the elements of the compliance
matrix in Equation (2) to define inplane and flexural engineering constants for a
laminate, effectively setting all but one of the stress resultants in the right hand side
of Equation (2) to define each coefficient. Wu and Sun [27] showed that using the
assumption N = M! =0 for slender, thin-walled laminated beams yields more ac-

curate results than the alternative plane strain assumption &/ =k = 0. Therefore,
we assume

N =M =0 3)

which is an approximation. This assumption was also used in Reference [28] to de-
velop atheory for laminated thin walled beams of symmetric cross-section subject
to bending only. The results of such theory compare favorably with experimental
data [29] and finite element results [28, 30, 31]. Then, by virtue of Equation (3),
the second and fifth column of the compliance matrix [Equation (2)] are not used,
and retaining only the terms that are of interest we get

£€; ay ag By P || N
Vi e aw B B ||NL
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If the laminate has off-axis plies that are balanced symmetric, then ct1s =16 = 0.
The term &6 is zero for laminates made with specially orthotropic layers. When the
off-axis plies are made with intermingled or stitched +6 layers of fabric, each layer
of fabric is specially orthotropic and 6,5 = 0 for the laminate. To reduce manufac-
turing costs, many composites are now made with stitched fabrics that contain two
inter-mingled +6 layers in one layer instead of stacking two layers of prepreg tape.
Then, the laminate is usually made symmetric to avoid warping due to residual
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stresses created during curing of the material. If the laminate needs to be unsym-
metrical, it is usually because of the addition of isotropic or 0/90 pair of layers. Un-
der these conditions dis = 0. Otherwise, 01 decreases rapidly in magnitude when
the number of off-axis, balanced symmetric layers increases [24]. Then, assuming
uncoupling between normal-and shearing effects, the compliance equation [Equa-
tion (4)] can be written as

51— a, B, O Y N.!
lCi. = .311 611 0 0 M.I ®)
y;_‘,- 0 0. a Bes | INL S
ki) L0 0 Be Ok )M

v

Inverting Equation (5) we obtain a reduced constitutive equation for the i-th seg-
ment

N, 4, B, 0 0]fe;
M! B, D, 0 O]]|«!
N [Tlo o F ool ©
M 0 0 C, H|l|k,

The reduced constitutive equation [Equation (6)] is very important in this work.
The segment stiffnesses 4, B, D, Fi, Ci, and H; allow for the determination of all the
section properties needed to solve the general problem of bending and torsion. Note
that the beam theory assumptions N/ = M =0 do not preclude the deformations el
and /. which can be computed from the second and fifth equations in Equation (2).

A convenient numerical procedure to obtain directly the coefficients in Equa-
tion (6) is to statically condensate the second and fifth columns of Equation (1)
(see Reference [32] pp. 450). A simple and efficient way isto reorder the rows and
columns in Equation (1) so that the second and fifth rows and columns occupy the
first two rows and columns. Then, interrupt the Gauss elimination process after the
first two elements of the diagonal are equal to one.

A simple physical interpretation for the coefficients in Equation (6) can be ob-
tained by using the expression for the stress resultants. For example, consider the
inplane force per unit length ‘ ‘

12

N; = -1/2 O':dr (7)

Taking into account that the behavior of each layer (denoted by the superscript
k) in the laminate is elastic, we can write
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o, = ENel - ) | (8)

where E! is the equivalent elastic modulus of layer k along the z-direction. Al-
though the equivalent modulus Ef ‘can be computed [24], it is not necessan.'y to
c?mpute this value in order to perform the analysis described here because it is
simpler to use Equation (1) through (6) or the static condensation procedure de-
scribed previously. Performing the integration we obtain

N; = A, + B,x! )

with

4, = [ Etar= EN:E_{‘:*

-1/2 =
v (10)

12
B, = f_’/er:dr= zE:t"F‘

k=1

where N is the number of layers in segment i, ¢ ¥ is the thickness of layer k, r is the thick-
ne'ss coordinate, and 7* is the distance from the middle surface of the segment to the
m'lddle surface of layer k (see Reference [24] exercise 4.2.3). Clearly, 4; is the axial
stiffness per unit length of the segment. The term B, represents the coupling between
bem:'ling curvature « ; and extensional force per unit length N that appears when the
lamm.ate is not symmetric with respect to the midsurface of the segment. Using the ex-
pressions for the remaining stress resultants, it can be shown that

12 u *y
D, = [ rEldr= ZE:[—E— + )2]
=1

N

_ 12 k _ Xk

Fi - f—IIZG;"dr— ;G:.\'t
=1

2 Y @)
H = [" rGtar= 26‘[1—2)+ z*(?*)z]
k=1

N
C, = f’lz rGrdr = ZG:"St"F"
=

an

-1/2

Here, D; is the bending stiffness of the segment under bending M, F; is the in-
plane shear stiffness under shear N, H; is the twisting stiffness under twisting
moment M, and C; is the coupling between the twisting curvature ' and the
shear force per unit length N, [see Equation (6)] also called shear flow q :A simple
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analogy with isotropic materials indicates that

= EAlbi

D, = Et’/12=El/b
F, = Gt = GA/b (12)

"H,=Gt’/12= lGJR/b
4

where E, G, t, b, and I are the elastic modulus, shear modulus, thickness, width,
moment of inertia, and Jg = b£*/3 for the isotropic material.

3.1 Principal Axis of Bending of the Segment
To investigate the physicélisigniﬁcance of the term B;, we propose a state of de-

formation &, # 0 with all the other strains and curvatures equal to zero. Then, the
first two of Equation (6) become

N; = A,(ii (]3)
M! = B!
that can be solved to give
i Bi i i
M.':_Nz:esz : (14)
4,
where
B, .
= — 15
€ 4, (15)

gives the location of the neutral surface of bending for the segment i. A force N!
acting with eccentricity r = e, (axis s") respect to the midsurface (contour s) in Fig-
ures 5 and 6, produces no bending curvature «'.

Once the location of the neutral axis of bending is known, the bending stiffness
of the segment is computed with respect to the principal axis s' of the segment
(Figure 5 and 6). Assuming that N! = 0 and replacing the first equation in Equation
(6) into the second equation, we obtain

2
M, = ( = %)—)x (16)
i
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and using Equation (15), we can write the bendmg stiffness per unit length of the
segment as

D, = D, - e} 4, 17)
and the bending stiffness of the segment as
(EI)= Db, (18)

Note that we have multiplied by the segment width &; so that the units of (ED) are
[Nm?]. Also note that (EJ) cannot be separated into E and / as it is done for homoge-
neous isotropic materials.

The symbol (E) indicates a single value (the bending stiffness), nota product of
E times /. Two letters in parenthesis have been chosen instead of defining a new
symbol so that the analogy between the present formulation and the case of iso-
tropic materials discussed in classical textbooks [33,34] is apparent.

Therefore, the first two constitutive equations in Equation (6) become uncoupled

{1}:’4’}= [/:) g]{e} (19)

when N/, M!, ¢’ and k' are ¢ defined with respect to s'-axis (neutral surface of
bendmg in Flgure 6), with D given by Equation (17).

The resultant force correspondmg to a strain €. constant through the thickness of
the segment acts along the axis s’ (which is on neutral surface of bending) on a
point with coordinates (see Figure 6)

x(s') = x(s)— e, sin a’ ‘ (20)
Hs')= ys)+e, cos aj

where a! is the angle of the segment with respect to axis x.
3.2 Principal Axis of Torsion of the Segment
To mvestloate the physical significance of the terms C; we propose a state of de-

formation y_, # 0 and all other strain and curvatures equal to zero, the last two
equations in Equation (6) also become uncoupled

N, =Fy,

: : @
M, =Cy,
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Figure 5. Cross section of segment i showing the definition of the various variables.
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Figure 6. Cross section of segment i showing the definition of the radius R.

. Materials Formulation for Thin Walled Composite Beams with Torsion 1573

that can be solved to give

M. =eN. @2)
with
C
& =7 (23)

that gives the location of the neutral axis of torsion for the segment i. A shear force N/,
acting with eccentricity r = e, (axis s”) respect to the midsurface (contour s) in Figure 6,
produces only shear strain which is constant through the thickness. No twisting curva-
ture ., is induced by the lack of symmetry of the laminate in that segment.

Once the location of the neutral axis of torsion is known, the torsional stiffness of
the segment is computed with respect to the principal axis of the segment s” (Figure 5).
Assuming that N/, = 0 and replacing the third equation in Equation (6) into the fourth
equation, we obtain the torsional stiffness per unit length of the segment as

H, =H, - elF, (24)

i

and the torsional stiffness of the segment as
(GJy) = 4H,b, (25)

where the factor 4 is explained in Section 4.4.1 [see Equation (46)].
Therefore, the last two equations of Equation (6) reduce to

e e
Mi) L0 Hiflk;

when N, M.yl and k. are defined with respect to s"-axis (the neutral surface
of torsion in Figures 5 and 6), with H; given by Equation (24).

The shear flow corresponding to a shear strain ¥}, constant through the thick-
ness acts on the neutral surface of torsion (axis s”) on a point with coordinates [see
Figure (6)]

x(s") = x(s)— e, sina;

i @n
W(s")= p(s)+e, cosa,
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4. SECTION PROPERTIES

The section properties are found integrating the stress components over the area
of the cross section. The area integral is divided into an integral over the contour
J«()ds and an integral over the thickness of the segment [, )dr.

The material properties may vary from layer to layer and from segment to seg-
ment. Therefore, it is not possible to separate the elastic properties (E and G) from
the geometric properties (area, moment of inertia, etc.). For this reason, in the fol-
lowing sections we define mechanical properties that contain the information of
the geometry and the material combined. To illustrate this concept, consider a
two-layer rectangular beam of width b and total thickness 2. The bottom layer has
thickness ¢, density pi, and modulus E,. The top layer has p2=2p and E; =31E,.
The geometric center of gravity of the cross section is found as y; = [ wdA/f 4dA. It
can be shown that y;; lays in the interface between the two layers regardless of the
coordinate system used. Let’s use a coordinate system with origin at the geometric
center of gravity just found. The mass center of gravity is located at Y, =
J4pydAl[4pdA = 1/6. That is, the mass center of gravity is located at /6 into the top
layer, which is twice as dense as the bottom layer. The mechanical center of grav-
ity is located at y,, = [4EydA/[,EdA = 15/32t. That is, the mechanical center of
gravity almost coincides with the geometric and mass center of gravity of the top
layer, which is 31 times stiffer than the bottom layer.

All mechanical properties are defined by integrals over the area of the cross-
section. To define each one of the mechanical properties we solve first the integral
over the thickness of the segment f,( )dr. The following comments can be made re-
garding the types of equilibrium integrals used in the rest of this section to obtain
the mechanical section properties:

1. When computing bending moments produced by axial stresses, coordinates
x(s") and y(s") [Equation (20)] will be used, meaning that the positions x and y

. on the neutral axis of bending are used.

2. When computing torque produced by shear stresses respect to a point O (Figure
6), coordinates x(s") and y(s") [Equation (27)] will be used to define the extreme
of the radius R(s") in Figure 6.

3. Integrals used to compute equilibrium of forces do not contain the coordinates
xandy.Inthose cases, neither Equation (20) nor Equation (27) will be needed.

While stiffeners can be modeled explicitly by adding them to the contour, it is
sometimes convenient to use concentrated areas to represent them; thus reducing the
complexity of the analysis. The contribution of concentrated areas is given by the axial
stiffness (EA) and torsional stiffness (GJx) of the stiffener. These mechanical proper-
ties of the stiffener can be computed separately by modeling the stiffner with the pres-
ent formulation [see Equation (30)]. In the computer implementation, a concentrated
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area is entered as a segment with coinciding initial and final nodes. In this way, the
contribution of the concentrated area is added to various integrals at the appropriate
point (e.g., during the integration of mechanical static moment). Therefore, concen-
trated areas need not appear explicitly in the rest of the formulation. However, concen-
trated areas are accounted for when computing axial forces, bending moments, static
moment, shear flow, twisting moments, etc.

4.1 Axial Stiffness

For simplicity, assume that a constant state of strain ¢’ = ¢_ is applied and all
other strains and curvatures are zero. Integrating the axial stress over the area of
the cross section we get

N.= [ [o.drds= [ Ni(s")ds (28)

and using Equation (19)
N: = fsAil:‘:dS: £:I‘Aids= gz(EA) (29)

where (EA) represents the axial stiffness of the section, ¢. the axial uniform strain
of the beam, [, indicates an integration over the contour describing the cross sec-
tion. The contour integral reduces to adding the contribution of all the segments
(Figure 1 through 3)

Eay= 3 ap, (30)

i=1

where n is the number of segments describing the cross section. Note that (E4)
cannot be separated into E and 4 as it is done for beams made of a single isotropic
material. Note that the length of a segment is the same regardless of the contour
used (s, s', or s").

4.2 Mechanical Center of Gravity
The mechanical center of gravity of the cross section is the point of application

of the axial force V., which is the resultant of the axial stresses caused by a constant
state of strains ¢.. Equating moments respect to the x-axis

N5 = [ [ As'Xo drds) G1)
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and using Equation (19), (20) and (29) we have

(B, = &, [ (1s) + ¢, cos a4, db G2

Solving f?r Ve and repeating the same procedure for X; we obtain

3. = (ES,)
¢ (EA) G3)
(ES,)
X; =
(E4)
where (ES,) and (ES,) are ili‘é mechanical static moments defined as
C(ES)= [ s Ads= Y 4,8, :
, i1 (34)

(ES,) = [ x(s")4,ds = ﬁ:f,.A,b,.

i=]

and X, y,, are the coordinates of the point P’ (Figure 5) where s = b/2.

4.3 Principal Axes of Bending of the Beam

The product of the modulus of elasticity E times the moments of inertia L, 1,
and the product of inertia I, of classical beam theory are replaced by the mechani-
cal properties of each segment defined as

(EI)= Db,
; b}
(EL)= 4,75 (35)
(EL,)=0

Note that the bending stiffness (EI) was derived before [Equation (18)] and

that the mechanical product of inertia (E/ ++) vanishes because the s’ are the prin- .

c'ipal axes of bending of the segment (Figure 5). The mechanical moments of iner-
tia and the mechanical product of inertia of a segment with respect to axes x'y’
(Figure 5) are obtained by a rotation —a ! around z, as

(EL, ) (El, ) =
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' (EI')= (EI')cos? & + (EI' )sin?
(EI', )= (EI')sin? a' + (EI' )cos® @' (36)
% s x r x

(EI, ) = [(EIl.)— (EI!)]sin @' cos @

1
x

Finally, using the parallel axis theorem and adding the contributions of all the
segments, we obtain the mechanical moments of inertia and the mechanical prod-
uct of inertia with respect to axes xg, yc,

(EL, )= D [(EIL)+ A;b,(y, +e, cosa )]
(El,,)= SI(EI;/ )+ A,b;(x; — e, sin a’)?] (37
i=1

(El s )= DI(ELL )+ A,b,(y; + e, cos @’ )(x, — e, sin a’)]
i=1

where x;, y; are the coordinates of the center of segment i (point P in Figure 5)
over the contour s (»=0) with respect to the global system x, y;. The system xg,
Ychas its origin at the mechanical center of gravity of the section and it is paral-
lel to the global system x, y. In Equation (37), (x; — essina’) and (y; + e cos a’)
are the coordinates of the center of the segment (point P’ in Figure 5) over the
axis s’ (r = es). .

The rotation # locating the principal axes of bending #, &, with respect to the
axes xg, Y, is found as usual by imposing the condition (El,¢) =0

2EI,.. )

W

tan 28 = ———C——
(El)'ﬁ )— (EIX(; )

(38)

and the maximum and minimum bending stiffness with respect to the principal
axes of bending are

(Elx(; )+ (E]}'G ) -+ ‘/((EI"G )+ (EI)‘(; )
2 - 2

2
] +(El,,, )} (39)

4.4 Torsional Stiffness

Taking into account the uncoupling between shearing and torsional effects in
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Equation (26) when using principal axis of torsnon s and noting that N ‘ is the

shear flow ¢’ we have

q' = Fy, (40)
M:’ = HIK;‘

Energy balance imptlies‘ that the work done by external torque equals the strain en-
ergy due to shear

-TﬂL——f(r g’ + MLkl )ds 1)

where B is the rate of twist. Ffom Equation (40) and (41), it is possible to derive the
torsional stiffness for both the open and closed section using the kinematic as-
sumptions of the classical theory.

4.4.1 OPEN SECTION.
For the open section, the shear flow vanishes (g =0), so Equations (40) reduce to

g’ =0 (42)

Note that the superscript / has been dropped from &, because the twisting curva-
ture is unique for the section while the twisting moment varies from segment to
segment. For the open section, the twisting curvature of classical plate theory is
twice the twist rate 8

aZ
/c=2w

= dzds 2 .

where wis the transverse deflection of the laminate. The energy balance [Equation
(41)] can be written

8= [ Hxlds =« [ Hds (44)

and using Equation (43) we have

=4 fs ds (45)

=1
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Smce T/ is the torsional stlffness (GJR), we have

(GJp)= 4 Hyb, (46)

i
For the isotropic case, Equation (46) leads to Jz = 1/3X bit}.

4.4.2 SINGLE-CELL CLOSED SECTION
In this case «.; = 0 and Equations (40) reduce to

q'=Fy., “7)
M, =0 (“8)

The energy balance [Equation (41)] reduces to
18 = gﬁsy;q"ds 49)

Replacing Equation (47) in Equation (49) and taking into account that for a
closed cell g is constant along the contour, we have

2 R ds

B=gqg \F (50)

Equilibrium of moments can be used to obtain an expression for the torque T'by
integrating the shear flow over the contour s”

T = ¢ (gR(s")ds = g[2T, ] 1)

where Iy is the area enclosed by the contour s”.
The rate of twist B is determined dividing Equation (50) by Equation (51)

-4 §=
A= $r (52)
The torsional stiffness is obtained dividing Equation (51) by Equation (52)

(.’

GJp), = (53)

T_
B
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The expression above can be improved to account for the nonuniform distribution
of shear through the thickness of the laminate. This is done by adding the torsional
stiffness of the open cell affected by a correction factor equal to 3/4 (see Appendix)

‘l [er’]z 3 no_
G = = +Z[42Hib,.] (54)

i=1

4.5 Shear of Open Sections

The analysis of shear stiffness, sectorial properties, shear center and restrained
warping, must be cornsidered separately for open and closed sections. To obtain
these expressions, we must consider the shear flow caused by shear forces. As in
the case of homogencous niaterials, the shear flow caused by shear forces is ob-
tained as an equilibrium condition using Jourawski’s formula. But in the case of
inhomogeneous materials, according to Equation (15) and (23), the resultant of ax-
ial forces that causes no bending curvature, and the resultant of shear flow that
causes no twisting curvature act on different local axis. The same situation occurs
in the case of restrained warping.

Note that consistently with classical thin wall beam theory, eccentricity ef-
fects e, and e, could be ignored, assuming the wall to be very thin. However, us-
ing e, and e, along with a linear variation of all the strains through the thick-
ness, as provided by classical lamination theory [Equation (1)}, it is possible to
improve upon classical thin walled theory, modeling the thickness effects for
moderately thick walls. Therefore, we will use the notation #7(s"), £(s’), r(s"),
etc., [Equation (20) and Equation (27)] to indicate on what local axis the global
coordinate is measured.

4.5.1 SHEAR FLOW CAUSED BY SHEAR FORCES

Using principal axes &, 7 (Figure 3), the shear flow caused by a shear force Q, is
given by Jourawski’s formula (Reference [33] pp. 36 1) adapted for non homogeneous
sections by replacing geometric properties by the mechanical properties used in this
work. The first moment of the area at one side of the point where shear is evaluated is
replaced by the mechanical static moment (ES;(s)). The moment of inertia is replaced
by the bending stiffness (El;), defined in Equation (39). Then, the shear flow is

=0, (ES;(5))

q,(s)= _—(_E—IE—)— (55)

where O, is the shear force applied in the direction 7 (Figure 3) and (ESk(s)) is the
mechanical static moment which is variable along the contour
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(ES¢ () = [n(sH,ds = [ (n(s) = e, sin @} )4,ds (56)

where af, is the angle of the segment with respect to the principal axis #. This inte-
gral must start at the free end where s = 0. Note that the mechanical static moment
(ESt(s)) defined in Equation (56) is variable along the contour, while the values de-
fined in Equation (34) are the total values for the beam cross section.

Integrating the shear flow caused by Q,, and using Equation (55), we do not re-
cover exactly Q,. The difference grows with the thickness. A better approximation
to gy(s) can be obtained by defining a consistent bending stiffness (E/:)* to be used
in Equation (55) so that equilibrium is satisfied

=0, (ES;(s))

D=y ©7

Integrating the forces originated by the shear flow we have

-0,
(El, )*

0, = fx(q,, (s)ds)cos a) = L(ESE (s))cos a, ds (58)

Equation (58) is used to compute the consistent bending stiffness to be used in
Jourawski’s formula [Equation (57)]

(El,)* = - [ (ES, (s))cos ajds (59)
Similarly
g: (s) = :%—%s—» (60)
where
(ES, (N = [(E@s)+ e, cos a] )d,ds 61)
(EI* = - f (ES, (s))sin @} ds (62)

Equations (59) and (62) are used to compute a consistent bending stiffness to
improve Jourawski’s formulas [Equation (57) and (60)]. This correction is gener-
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ally overlooked in the literature for:the isotropic case; but:it is necessary for the -

case of beams with moderately thick walls.

4.5.2 SHEAR STIFFNESS OF THE SECTION
For an infinitesimal segment dz of the beam subject to shear 0,, the balance be-
tween the external work and the strain energy is

1.9
2(G4;)

‘ %Q,,ydz = dz = % S MLk, +q'y.,)dsdz (63)

While the strain energy is computed as an integral over the volume, it must be
noted that the intégral over the thickness has already been computed in Equation

(6). Taking into ac'couh‘t only the shear deformations (x; =0), and using the third
of Equation (6) and Equation (57) we have

, g =0,(ES;()
Vs = F,' =

F(EI)* €

Replacing into Equation (63) with k, = 0, we obtain the shear stiffness of the

section as
El, )*)?
(GA4;) = L’f_z_]_ds (65)
JIES (NP F
Similarly
[(EL, )P
G4,)= ————— (66)
2
JIEs, (M) 3
4.5.3 SECTORIAL PROPERTIES
The sectorial area is defined in the usual form (Reference [33] pp. 307)
w(s)= [ R(s")ds 67)

using arbitrary points for the pole and for the initial point where w(s) = 0 (Figure

2). The radius R in Equation (67) (see Figure 6) must be evaluated on the local axis -

$The current
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-s" because dw(s) will be used to define twisting moment caused by shear flow (act-

ing on s”") in Equation (72) through Equation (76).

In the case of open sections, Equation (67) may require to treat the segments in a
different order of that used initially to define the contour (Table 2), because we can
start to compute a segment only if the value of w(s) in either extreme is already
known. In Figure 2(b), we add sequentially the static moment of segments 1,2.. . .,6.
To compute sectorial area the orderis 1,3,2,4...6.}

The sectorial area w(s) is used in the definition of the mechanical sectorial prop-
erties, which are defined as follows:

The mechanical sectorial static moment

(Ew)= [ ws)4,ds | (68)
The mechanical sectorial linear moments

(Eswy )= [ (1(s) - e, sin @}, w(s)d,ds (69)

and

(ESw,)= [ (E(s) + e, cos &} yw(s)d,ds (70)
The mechanical sectorial moment of inertia

(Etw) = [ [W(s))* 4,ds 1)

4.5.4 MECHANICAL SHEAR CENTER

The coordinate &, of the mechanical shear center is calculated by equilibrium of
moments (with respect to the mechanical center of gravity), caused by the shear
force O, and its associated shear flow g,(s) [defined in Equation (57)]

0,6, = [ R(s")q, (s)ds (72)

where the initial point / is at the free end and F is the final point (Figure 2). Using

Equation (57) and (56) into (72) we have

puter impl ion reorders S ically.
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_ =1
(EI)*

£, J7 R[S ds]as (73)

Recognizing il‘nét.[R(s”)ds] is the differential of sectorial area dw(s) and that
[7(s")Aids] is the differential of mechanical static moment d(ES:(s)), the order of
integration can be changed (integration by parts). Since the mechanical static mo-
ment is zero at the end points we have

o= — ] Fn(s')Ai[fde]ds— L [y wlsMs (74)

T E* " (E)*
and using Equation (69)‘
__ (ESw; ) 5)
Ve (EI)*

The pole of the sectorial area w(s) is the mechanical center of gravity because in
Equation (72) the moments are taken respect to the point (xg, y¢). Similarly

(ESw, )
T (EI)*

7, = (76)

]t is important to note that if we use the mechanical shear center as pole, then £ =
0 and 7. = 0. Therefore, by Equation (75) and (76), the mechanical sectorial linear
moments are zero.

4.5.5 RESTRAINED WARPING
Secondary Forces. When free warping due to torsion is restrained, axial secon-
dary forces appear. They can be computed (Reference [33] Section 8.1 1)as

2
N.(s)=-— i;;?- W(s)A, an

where W(s) is the principal sectorial area as will be shown in the next section. Equi-
librium of forces requires a secondary shear flow

0. )= 23 [, ds a8)
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The angle of twist 8 is computed solving the general equation for torsion

d‘o d’ : T

k=

k
dz* dz? (GJR)

@9

where T" = dT/dz, and k2 = (GJr)/(EI'w), and (EIW) is the mechanical warping stiff-
ness defined as in (Reference [33] pp. 320) which is computed as in Equation (71)
but using principal sectorial area

EIw) = [ [W(s)) 4,ds (80)

Principal Sectorial Area Diagram. Inthe case of torsion 7 acting alone, the sec-
ondary axial forces integrated in the contour s’ must vanish because no axial force
N: is applied

N.= [N.(s)ds=0 @81

- and using Equation (77) leads to

f:W(s)A,.ds =0 (82)

The bending moments M; and M, caused by the secondary axial forces must also
vanish. Using Equation (77), the conditions M; = 0 and M, = 0 lead to

J () - e, sin &} W(s)4,ds = 0 (83)

J )+ e, cos ) W(s)d,ds = 0 (84)

These equations can be satisfied, using an arbitrary initial point, if the mechani-
cal shear center is used as a pole. As it was seen at the end of Section 4.5.4, the left
hand side of Equation (83) and (84), which are mechanical sectorial linear mo-
ments [Equation (69) and (70)] will vanish. To satisfy Equation (82) the initial
point is changed, which is equivalent to subtracting a constant. To obtain the prin-
cipal sectorial area w(s), a sectorial area wi(s) with an arbitrary initial point is cal-
culated first. The mechanical shear center is used as the pole to also satisfy Equa-
tion (83) and (84)

()= [IR(s")ds (85)



1586 JuLIO C. MASSA AND EVER J. BARBERO

where, as in Equation (67) the end of the radius R is located on the axis s” (Figure

6). Then, the principal sectorial area W(s) is defined as
w(s) = w(s)— w, (86)

where the .conétarit:_wo, is obtained after introducing Equation (86) into Equation
(82),0r '

I
Y = E5 S wis)4,ds (87)

4.6 Shear of Single Cell Closed Section

4.6.1 SHEAR FLOW CAUSED BY SHEAR FORCES

For closed sections, the point at which g(s) = 0 is not known a priori. Therefore, to
use Jourawski’s formula [Equation (57)], it is necessary to proceed in two steps. First,
consider the shear force O, acting on the mechanical shear center which does not pro-
duce shear flow by torsion, and apply Equation (57) using an arbitrary initial point.

9, (ES; ()
()= ———— (8%)
Iy ( Elg ) *
To change the initial point is equivalent to add a constant go, such that
qr] (S) = qu] (S) + qo:, (89)

Since the shear load was applied at the mechanical shear center, the constant Goy
must be such that the section does not rotate due to torsion. The rate of twist due to
torsion is given by Equation (52). Since the shear flow due to shear [Equation (89)]
is not constant, we have (see Reference [33] pp. 371)

1 ds
B= P+ 90 (90)
Setting B = 0 leads to
ds ds
%0, = ~Pa,, e /O o1
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':Similarly, the shear flow caused by Q: can be obtained as

q: ()= g () + g 92)
* where
- QE (ES:) (S))
g (s)=— (TI,,)_*_ 93)
and
ds ds
Gor = “Sﬁﬂz Q= /gﬁs; 4

1

4.6.2 MECHANICAL SHEAR CENTER

The coordinate &, of the mechanical shear center is calculated by equilibrium of
moments (with respect to the mechanical center of gravity), caused by the shear
force O, and its associated shear flow g¢,(s) (Figure 6)

0,E. = $q,(R(s")ds ©5)

or using Equation (89)

£ = Q—' § (9, () + go, IR(s" )ds (96)
n

where g1,(s) is given by Equation (88) and g, is given by Equation (91). Similarly

" = —Q‘— B (@ (5)+ goe R(s")ds ©7)
&

4.6.3 SHEAR STIFFNESS OF THE SECTION

The derivation is similar to that of Equation (63-66). However, for the closed sec-
tion, the point where the mechanical static moment is zero is not known a priori.
This problem is addressed similarly to Section 4.6.2. For the case of a unit applied
shear load O, = 1, Equation (63) leads to
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' lg, &)’
GA)Y=1/H—"——ds
é /¢\ F, (98)

2
G4,)=1 gss[—"ﬁ—lf:‘lds

where it was assuméd that (c; =0andy! =g/F;as it was done in Equation (64),
qy(s) is defined in Equation (89), and g(s) is defined in Equation (92).

4.6.4 SHEAR FLOW CAUSED BY TORSION
The shear flow due to torsion is obtained from Equation (51)

T
= 99)

s

Equation (99) applies for very small thickness. When the thickness is not that small,
abetter result can be obtained recognizing that part of the moment is in equilibrium be-
cause of the Saint Venant stresses, like in the open section. The total torsional moment
(7) is distributed among shear flow (7;) and the Saint Venant stresses (7s)

T=T,+T (100)
The distribution is proportional to the respective stiffness, according to

T T, _ Ty,
GJr) (GJR),

3 (101)
Z (G‘]R )SV

where (GJ) is given by Equation (54), (GJr), is given by Equation (53), (GJr)sv is
given by Equation (46) and the correction factor 3/4 for a circular tube is used as in
Equation (54). Introducing Equation (101) into Equation (100) yields

o7 == 3G )y
T,=T T\'V—T[] " (G_,R)] (102)

Recognizing that 7, produces g7 in Equation (99), we have

_ T | _3GR)y
q’"zr.[l 4 (GJR)] (103)

s
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It is important to note that in.the case of an isotropic circular tube, the theory de-
veloped here [Equation (54), (103), (107), etc.) gives the exact result for stiffness
and strength regardless of the thickness.

5. BEAM DEFORMATIONS
The deformations of the beam are now computed using the classical formulas

referred to the principal axes. Therefore, the axial strain ., the two curvatures «,,
K¢, and the twist ratio 8 are computed as follows

3 —.L
* T (EA)
M,
K =
T (EL) (104)
_ M
“ = &L
T
h= (GJy)

Ifthe beam is a component of a structural system (indeterminate or not), the me-
chanical properties (EA), (El,), (El;), (GAy), (GAe), and (GJr), can be easily trans-
formed into equivalent geometrical properties (dividing by arbitrary equivalent
modulus E and G). The nodal displacements of the structure and stress resultants at
any section can be obtained using the equivalent properties as input for any struc-
tural analysis program, either a beam finite element analysis or a matrix structural
analysis program. Later on, these stress resultants can be used in Equation (104) to
compute the beam deformations at any section of the structure. The proposed the-
ory and its computer implementation can be used as a pre- and post-processor for
any standard matrix structural analysis program.

6. SEGMENT DEFORMATIONS AND STRESSES

The axial strain in the midsurface at any point can be computed in terms of the
beam deformations [Equation (104)]

e N g M My de
e’(s)—(EA)+§(s)(EI,,) ”(s)(EIE) 7 w(s) (105)

where the last term correspond to restrained warping [Equation (77)] for an open
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section. Note that ¢/ (s) changes point to point because &(s) and 7(s) are the coordi-
nates in principal axis of a point in the contour s, and W(s) also changes with s.

The bending curvature, which is unique for each segment, can also be computed
in terms of the beam deformations [Equation (104)]

Coa ; L
K. =K, cosa, +K, sina, (106)

wherea ;, is the angle between the segment with / orientation and the principal axis .
The twisting curvature, constant for all segments, is calculated from the twist rate

. j; =2T/(GJ open section
TR { z) Op } (107)

* 7| =T/(GJ,) closed section

where the minus sign is introduced to account for the definition of the positive
torque T in Figure 1'and the positive twisting moment M., in Figure 4.

To determine the shear strain y ., (s) we need first to obtain the total shear flow
from shear, torsion, and restrained warping, acting in the local s” axis

9(s)=q,(s)+ q; () + q; + g, (5) (108)

where the last term in Equation (108) correspond to a restrained warping [Equa-
tion (78)]. The shear flow g¢,(s) due to shear forces O, is given by Equation (57) and
Equation (89) for open and closed sections respectively. The shear flow g;(s) due
to shear force Q; is given by Equation (60) for open sections and Equation (92) for
closed sections. The constant flow due to torsion qris given by Equation (103) for
closed sections and gr = 0 for open sections.

The shear strain y ., (s) in the midsurface can be calculated from the third equa-
tion in Equation (6)

i ”:s_ci’c:s q(s)
f(s)= —=——1= - 27
7 (9) 7 F

i i

€K, (109)

where g(s) is given by Equation (108) and k', is given by Equation (107). Note that
the shear flow acting on s” does not produce curvature; the curvature in Equation
(109) is due to torsion only.

Finally, the stress resultants are computed at each point by Equation (6). The
four stress resultants are complemented with N T=0and M + =0, reordered, and in-
troduced in a standard laminate analysis program [using Equation (1)] to evaluate
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the failure criteria. Three failure criteria were implemented in this work: the maxi-
mum stress, maximum strain, and Tsai-Wu quadratic interaction criteria. These
computations are repeated for as many points in each segment of the contour as
necessary to verify that the stresses do not exceed the allowable values.

It is interesting to note that using Equation (107) and (109) in the third and
fourth equation of Equation (6) we get as expected

N;s = q(s)_ (110)
M.'ir = eqq(s)+ Hi,ci.\‘

Equation (1) is derived under the assumption of linear strain distribution through
the thickness. While classical thin walled beam theory can account for bending ef-

- fects, the shear strain caused by torsion in closed cells is constant through the thick-

ness, which limits the formulation to thin walls. On the other hand, the present formu-
lation provides a better approximation by using a linear distribution of shear through
the thickness. Therefore, it is possible to analyze moderately thick walls, which are not
so thick as to require the inclusion of transverse shear effects. However, the shear
stress distribution in the walls due to shear forces [g,(s) + g:(s) in Equation (108)] are
still considered constant through the thickness.

7. NUMERICAL RESULTS

Numerical results obtained using the procedure developed in this paper are
compared in this section to experimental results from the literature. Experimental
results for rectangular tubes made of Graphite-Epoxy are reported in Reference
[22] and analyzed in Reference [23]. They present results for a box beam of length
L =76.2 cm, clamped at one end and with a tip torque 7= 0.113 Nm applied at the
other end. The external dimensions of the cross section were: height d = 26.035
mm and width ¢ = 52.324 mm. The laminate of all walls was a cross-ply with 6 lay-
ers, each 0.127 mm thick, in a [0/90]; configuration, with a total thickness of 0.762
mm. The elastic properties of each ply were E; = 141.865 GPa, Er=9.784 GPa, G,
=5.994 GPa, and v;r = 0.42. Note that the laminate is not symmetric but the cross
section is symmetric since the interior layer has the same angle in all walls of the
cross section. While, the reported experimental angle of twist at the tip was 0.420
1073 rad., the model developed in this paper predicts 0.426 10~ rad., with a 1.4%
difference.

Experimental results for laminated circular pipe are presented in Reference [21]
along with analytical and finite element analysis of the circular pipe. The pipe was

- constructed of 30 layers, each 0.254 mm thick, of hand lay-up fiberglass and ar-

ranged in a cross-ply unsymmetric configuration [0/90],s. The material properties

. were reported as E; = 16.605 GPa, Er = 7.028 GPa, G;r = 2.315 GPa, and v;7 =
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0.2403. The mean radius of the pipe was R=5.334 cm and the length L=1.219m.

It should be noted that nonlinear behavior was observed for high values of torque.
However, with an applied torque of 1356 Nm the material remained in the linear
range. Under these conditions, a twist angle of 5.77 degrces was measured and
5.60 degrees was predicted using the theory in this paper, with a 3% difference.
Also for 1356 Nm of applied torque, a shear strain of 3675 microstrain (mi-
crostrain = 10~° mm/mm) was measured on the surface of the pipe. The analysis
presented in Réference [21] predicted a shear strain of 4316 microstrain while
4278 microstrain was predicted at the mid-surface using the theory in this paper.
The strain at the outer surface can be computed as Y:s + Kz /2 = 4580 microstrain.
The discrepancy between experimental and theoretical strains may be caused by
uncertainties in the material properties.

8. CONCLUSIONS

The concept of mechanical properties was introduced in this paper to substitute
the product of the modulus of elasticity times the geometrical properties used in
classical textbooks. With certain care to model the laminated structure of the mate-
rial, it was shown that it is possible to follow closely the theory of beams presented
in classical strength of materials textbooks. This has the advantage that thin-walled
composite beam theory becomes accessible to a large number of engineers that are
familiar with the subject. By transforming the mechanical properties into equiva-
lent geometrical properties (dividing by arbitrary values of E and G), the present
formulation can be used as a pre- and post-processor of any matrix structural analy-
sis program. All the contour integrals are reduced to summations over the number
of segments, allowing for a general solution for any geometry of the cross section,
open or closed, without the need for specialized evaluation of contour integrals.
Comparisons with experimental data show good correlation, consistent with the as-
sumptions of the theory. The formulation presented in this paper can be easily ex-
tended to multicell sections and closed cells with fins. Finally, constrained warping
of closed cells can be easily added, although it is usually negligible.

APPENDIX. CORRECTION TERM IN EQUATION (54)

In Equation (49), the shear strainy., is constant through the thickness because of
the assumptions of classical plate theory [24]. For an isotropic section, this trans-
lates intoz:, = constant, which is commonly accepted in thin walled theory. For the
particular case of a tubular section, the exact solution of torsion is available, and it
reveals a linear variation of 7., through the thickness. Comparing the exact solution
for the tubular section of mean diameter D and thickness ¢
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(GI Vs = %Dt(Dz +1%)G

exact

with the result for a thin walled tube obtained using Bredt formula [33,34]
d 2
GIR)pea = 1 D(D*)G
and the formula for a tube with a longitudinal slit (open section)
(G Do = %[% Di(e® )G]

itis clear that the thin walled solution for closed tube is missing 3/4 of the open sec-
tion solution to reach the exact solution for the tube.
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Experimental Evaluation of Repair
Efficiency of Composite Patching by ESPI
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ABSTRACT: In this paper, the electronic speckle pattern interferometry (ESPI) tech-

nique was first used to investigate repair efficiency of patching by using composite materi-
als on aluminum alloy plates containing a central crack. The effect of single-sided and
double-sided patchings with same total thickness and four different fiber orientations of the
patchings was discussed. A self-developed computer program for analyzing mode I stress
intensity factor (SIF), K, was performed to evaluate the repair efficiency. To verify the cor-
rectness of the experimental results, recontruction technique was employed. Well-matched
condition between the experimentally obtained and reconstructed fringes indicates the cor-
rectness of the experimental results.

KEY WORDS: electronic speckle pattern interferometry, stress intensity factor, compos-
ite patching.

1. INTRODUCTION

N THE PROCESS of manufacturing or applications, damages are occasionally pro-
duced in structures or structural.components. When the damages appear in a
part of structure or an important component of a structure while the structure or the
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